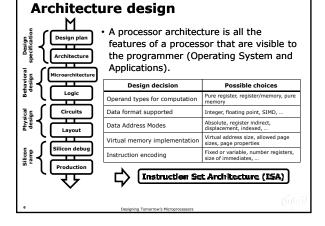
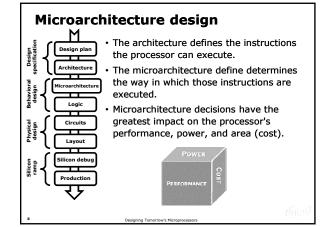

Agenda


- · Introduction
- · Design plan
- · Architecture design
- · Microarchitecture design
- · Logic design
- · Physical design
- · Silicon ramp
- Design Types and Intel Tick-Tock model
- Conclusions

lesigning Tomorrow's Microprocessor



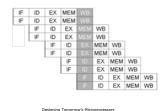
Architecture design

Instruction Set Architecture (ISA) Category					
CISC	Complex Instruction Set Computers	Complex but compact instructions			
RISC	Reduce Instruction Set Computers	Simple instructions			
VLIW	Very Long Instruction Word	An instruction is a set of operations grouped together by the compiler			

Category	Architecture	Processor	Manufacturer	
CISC	VAX	MicroVax 78032	DEC	
	X86	Pentium 4, Athlon XP	Intel, AMD	
RISC	SPARC	UltraSPARC IV	Sun	
	PA-RISC	PA 8800	Hewlett Packard	
	PowerPC	PPC 970 (G5)	IBM	
VLIW	EPIC	Itanium 2	Intel	

Designing Tomorrow's Microprocessors

Microarchitecture design


- Microarchitecture changes are not visible to the programmer and can improve performance without software changes.
- Because microarchitectural changes maintain software compatibility, processor microarchitecture have changed much more quickly than architectures.
- Today's higher integration capacity allows more complex techniques to be implemented.
- The microarchitecture defines the different functional units on the processor as we between them.

 Applications and division of work

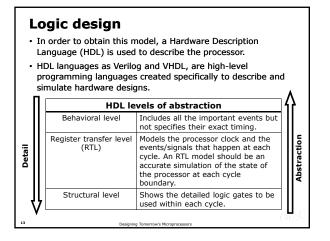
ISA
Microarchitecture

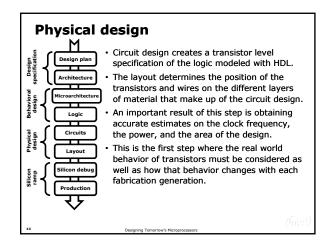
Microarchitecture design

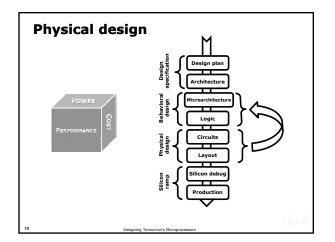
- Designing a processor microarchitecture involves trade-offs of IPC, frequency, die area, power, and design complexity.
 - Number of stages of the pipeline.
 - Instruction issue width.

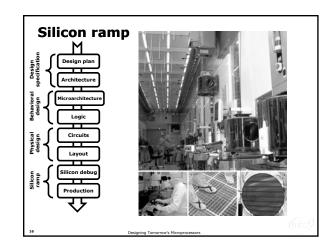
Microarchitecture design

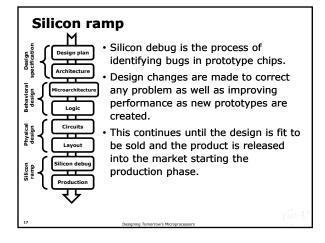
- Designing a processor microarchitecture involves trade-offs of IPC, frequency, die area, power, and design complexity.
 - Number of stages of the pipeline.
 - Instruction issue width.
 - Methods to resolve control dependencies.
 - Methods to resolve data dependencies.
 - Memory hierarchy.
 - In-order / out-of-order execution
 - Multi threading
 - Branch prediction
 - Number and type of functional units

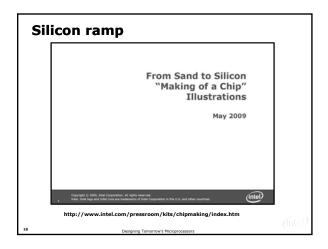

Design plan Graphy and a control of the control of


Logic design


Typically, microarchitecture design produces diagrams showing the interaction of the different units of the processor and a written specification describing the different algorithms.


- The logical design goal is to obtain a much more detailed and formal description of the logical behavior of all the units and the signals that communicates them.
- The microarchitectural specification is turned into a logical model that can be tested for correctness.


Designing Tomorrow's Microprocessors



Design Type	Reuse	48				Silicon
ead	Little to no reuse	(SH				debug
roliferation	Significant logic changes and new manufacturing process	time (months)			Silicon debug	Physical
ompaction	Little or no logic changes, but new manufacturing process	Approximate design time		Silicon debug	Physical Design	Design
ariation	Some logic changes on same manufacturing process	Approx		Physical Design Behavioral Design	Behavioral Design	Behaviora Design
Repackage	Identical die in different package	o	Silicon Debug Repackage	Design Spec	Design Spec Proliferation	Design Spec

Conclusions

- · Moore's Law predicts the increase in transistor density.
- Transistor scaling and growing transistor budgets have allowed microprocessors performance to increase at a dramatic pace, but they have also increased the effort of microprocessor design.
- The production of new fabrication generations is inevitably more complex than previous generations.
- This implies a higher effort in validation at all the design levels.
- There is a need for new and better methodologies and tools to help in the different tasks.
- A sustained research at all the steps but specially at the fields of microarchitecture and process technology is required.

Designing Tomorrow's Microprocessors

##