

Outline

- System-on-Chip Illustrated
- SoC Challenges and Current Solutions
- · Intel's Moorestown Platform
 - Designed for Next Generation Smartphones
- Future SoC:
 - Programmable Accelerator

Designing Tomorrow's Microprocessors

(june)

SoC Challenges and Current Solutions

Designing Tomorrow's Microprocessors

SoC Challenges

- Exponentially increasing SoC design complexity
- Endless Performance Requirements
- Maximum Power-efficiency

4.40

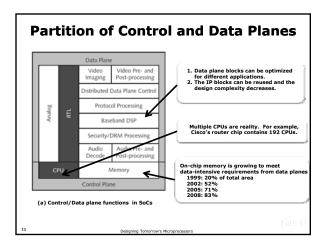
SoC Challenges - 1/3

- · Exponentially increasing SoC design complexity
 - SoC = all components required for a complete system
 - 1995: < 1 million gates /one microprocessor
 - Today: 100s millions gates / multiple microprocessors
 - "Today, as always, to be competitive, you must design almost as complex theoretically possible. If you don't, someone else will do, and the extra complexity will provide competitive edge."

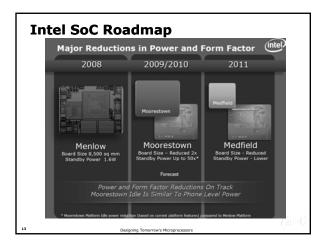
Designing Tomorrow's Microprocessors

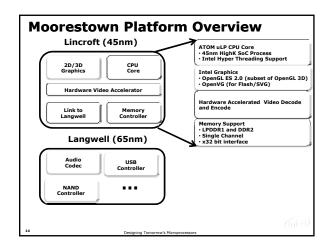
SoC Challenges - 2/3

- · Endless Performance Requirement
 - Multimedia: many different codec for images/audio/video
 - HD H.264 Decode: 10-50 GOPS for 30 fps (real time)
 - · HD H.264 Encode: ~100 GOPS for 30 fps
 - Super Resolution: ~1000 GOPS for 30fps
 - Networking: diverse and complicated standards
 - · Telephony: constant bit rate service
 - Multimedia streaming: higher bandwidth but variable bit-rate service
 - Wireless
 - · Many wireless coding standard
 - Wi-Fi, WiMax, etc
 - · New standards appear all the time


(linke)

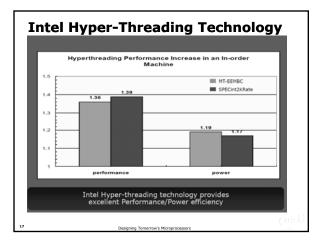
SoC Challenges - 3/3

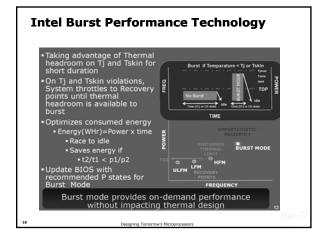

- · Maximum Power-Efficiency
 - Phone: 3W power budget
 - · Otherwise, the user feels too hot
 - HD.264 Decode
 - · Normal PC: 45W or more, depending on the video format
 - · Hardware Decoder in SoC: 100-300mW
- · A big challenge
 - How to meet different performance requirements under very tight power budget?


esigning Tomorrow's Microprocessors

Current SoC Design Solution: Divide and Conquer A SoC is divided into blocks and each block is optimized for different performance/power requirement. Some blocks are control processors (control plane) Programmable / flexible Some blocks are data processing units and implemented with RTL hardware (data plane) **Boundary - ADC - Chip MPSOC - Control Plane | Co

Moorestown Highlights


- · High Performance for amazing Internet experience
- · Dramatically lower Power
 - Up to 50x platform idle power reduction compared to Menlow Platform
- · Small size for smartphone form factor

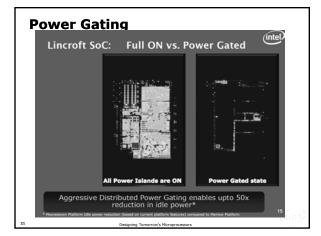

Designing Tomorrow's Microprocesso

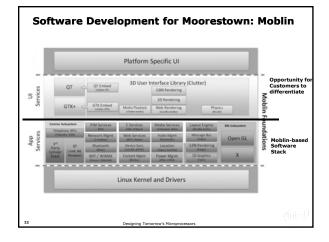
Moorestown Performance Technology

- · Intel Hyper Thread Technology
- Intel Burst Performance Technology

Designing Tomorrow's Microprocesso

Moorestown Power Reduction

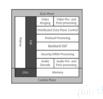

- Active Power Management Power and Clock Gating
- · Use Low Power and Handheld IO
 - LPDDR
- · Accelerators (GFX, video decoder)
 - Enable functionality at low power (e.g., HD video)


Designing Tomorrow's Microprocessors

Active Power Management

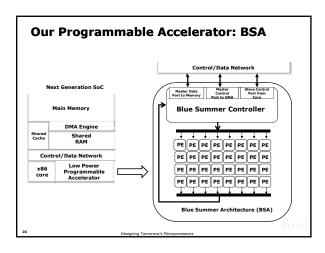
- Enables long standby battery life needed for smartphones
 - Through low idle power
- Lower active scenario power by shutting things off that are not used in that mode
 - Switching off video decode block in web browsing

(Intel/

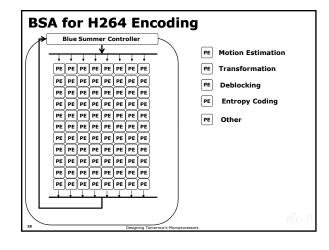

Future SoC

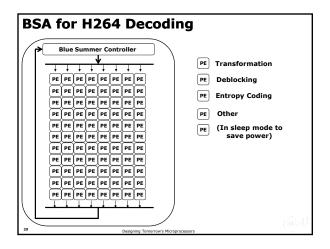
- Programmable Accelerator

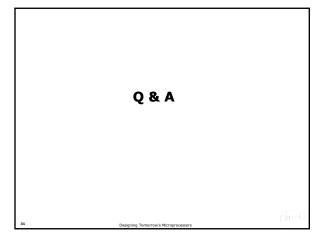
(fini-l)


Current SoC

- IP blocks based on fixed function implementation are not programmable
 - Each data plane block cannot used for other purpose
- Long Time-to-market (TTM)
 - The block is not programmable
- High Non-Recurrent Engineering(NRE) cost




Designing Tomorrow's Microprocessors



Programmable Accelerator Different applications can be mapped into the same programmable accelerator TTM & NRE cost are reduced

References

- Rapid Repair Website: IPhone 3GS disassembly
- R. Patel, Moorestown Platform: Based on Lincroft SoC Designed for Next Generation Smartphones, HotChips 2009
- Shreekant Thakkar, Moorestown: Intel's Next Generation Platform for MIDs and Smartphones, IDF 2009
- Steve Leibson, How to Avoid the Traps and Pitfalls of SoC Design, Microprocessor Report, 2009
- Moblin: http://moblin.org

Designing Tomorrow's Microprocessors