

What is Power for Physicists? Power is the rate at which work is performed $P = \frac{W}{T}$ Real-life experience go from home to UPC

What is Power for Computer Scientists?

- · Same as for physicists, only for computers
 - "Work" = # of performed operations
 - "Work" = Time idle (but powered-on)

$$P = P_{dyn.} + P_{stat.}$$

Designing Tomorrow's Microprocessor

Why Design for Low-Power?

- · Most processors over-provision:
 - They only scarcely require all of the resources
- Goal: reduce power, without affecting perf.
- · Low power means:
 - Increase battery life (laptop/mobile phone)
 - Better thermal behavior
 - Less money spent on electricity
 - But also: performance

Designing Tomorrow's Microprocessor

Agenda Motivation Power Dissipation Saving Dynamic Power Dealing with Static Power Looking Ahead Concluding Remarks Progress Bar

Dynamic Power

- Dynamic power is proportional to four components:
 - Circuitry capacitance
 - Operating voltage
 - Activity factor
 - Operating frequency

$$P_{dyn.} = C \times V^2 \times A \times f$$

Designing Tomorrow's Microprocessor

Static Power

- · Static/Leakage power depends on:
 - Operating voltage
 - Temperature
 - Threshold voltage
 - Transistor other characteristics

$$P_{\text{stat.}} = V \times k \times e^{-q_x V_{\text{th}}/(a_x k_x T)}$$

Designing Tomorrow's Microprocessors

Agenda

- Motivation
- Power Dissipation
- Saving Dynamic Power
- · Dealing with Static Power
- Looking Ahead
- · Concluding Remarks

Designing Tomorrow's Microprocesso

Techniques to Save Dynamic Power

- · Reduce any of C, V, A, f
 - Caveat: without increasing the others ©

$$P_{dvn.} = C \times V^2 \times A \times f$$

Designing Tomorrow's Microprocessor

Reducing Activity

• On every tick → add data

Designing Tomorrow's Microprocessors

Reducing Activity

• When no data, clock still ticks consuming power ...

Designing Tomorrow's Microprocessor

Reducing Voltage and Frequency

- Increasing operating frequency relies on increasing voltage ...
 - Need high currents to drive capacitances fast!!
- · Some times there is slack in applications:
 - Detect that
 - Put core in lower freq/ voltage
 - Decrease slack in high-power mode

Designing Tomorrow's Microprocessors

Techniques to Save Static Power

- Reducing static power == reducing V, Vth, T
 - Caveat: without increasing dynamic power @
 - In practice this never happens

Designing Tomorrow's Microprocessors

Making V_{th} Larger

- · Primary reason for leakage
- · But, making it larger:
 - Makes transistors slower
 - Makes capacitance (dynamic power) larger
- For some parts this could be OK (L2 cache)
- Adaptive circuit techniques:
 - Reverse body bias
 - Forward body bias
 - Gate Vss

Designing Tomorrow's Microprocessors

Body Bias Techniques Leak1 Leak1 >> Leak2

Reducing Voltage when Idle

- Reducing operating voltage when idle is important
 - Tricky part: changing voltage takes time
- Usually proposed for caches:
 - Large component
 - Many data we will not use anymore
 - Lines not being recently used may not be used
- Technique shown to work for L1 data and instruction caches

Dealing with Temperature

- Temperature is tricky:
 - Positive feedback between power and temp
- We have to be more aggressive with leakage saving techniques when high temp
 - Even at the expense of increased dynamic power
 - i.e. decay faster

.....

Designing Tomorrow's Microprocessors

Power consumption first-class constraint Low-power is the only way to go!! Many things to improve at many levels: Circuit level (smart gating, fast dvfs) Architecture (detect when over-provisioning) Compilation (parallelization)

Motivation Power Dissipation Saving Dynamic Power Dealing with Static Power Looking Ahead Concluding Remarks Progress Bar Progress Bar

Conclusions

- Excessive power consumption comes from overprovisioning
- Performance is important, but power is as well
- · Today we described:
 - Why we need to look at it
 - What are the different types of power consumption
 - Techniques used to mitigate them
 - Some current/future trends
- Expect to see a lot of exciting research in this area!!

Designing Tomorrow's Microprocessors

