Designing Tomorrow's Microprocessors

Qiong Cai, Josep M Codina, Antonio González, Pedro Marcuello, Raúl Martínez, Kyriakos Stavrou, Xavier Vera, Polychronis Xekalakis

Intel Barcelona Research Center

Aula Empresa, Facultat d'Informàtica de Barcelona, February 2010

© Intel Corporation, 2010

Course Agenda

- Overview of Today's Microprocessors and Future Trends
- Design Cycle for Microprocessors
- Methodology for Research in Microprocessors
- Multi-core Processor Architectures
- Parallel Programming
- Systems on Chip
- Techniques for Power Reduction
- Reliability
- · Hardware/Software Co-designed Microprocessors

Designing Tomorrow's Microprocessors

Acknowledgment

- · Phoenix Project
 - Osman Unsal
 - Oguz Ergin
 - Jaume Abella
 - Pedro ChaparroJavier Carretero
- · Raimat Project
 - Tana Ramirez
- Intel
 - J. Tschanz, S. Mitra. S. Iacobovici, K. Bowman, C. Wilkerson, and many others!

Designing Tomorrow's Microprocessor

Soft Errors (2)

- · Soft Errors can cause problems in different ways
 - Change the data value in the Caches and Memory
 - Corrupt the execution of instruction due the flip of data in the pipeline registers.
 - Change the character of a SRAM-Based FPGA circuit. (Firm Error)
 - Datapath logic SET (Single Event Transient) caught by registers/memory

Soft Errors (3): Evidence

- · Error logs of large servers
 - Normand, IEEE T. Nuclear Science, Dec. 1996.
- Sun Microsystems, 2000 (from Baumann, IRPS 2002)
 - Cosmic ray strikes on L2 cache
 - · Mysterious crashes of Sun flagship servers
 - Companies affected
 - · Baby Bell (Atlanta), America Online, Ebay, & dozens others
 - · Verisign moved to IBM Unix servers (for the most part)

Designing Tomorrow's Microprocessor

Testing (3)

- Observability
 - How easy is to propagate a failure in a node to the outputs
 - Internal nodes can be latched to increase observability
- Controllability
 - How easy is to set a node to a given value

(fidel)

Testing Challenges

- · Technology issues/integration consequences
 - Testing time
 - Yield vs Debug
 - Low Vcc: decrease margins, more noise
- · "New" on-die complex structures
 - For instance, interconnection network, validate the coherence protocol
 - DVS/DVFS

Designing Tomorrow's Microprocessors

Design For Testing (DFT)

- · DFT consists in
 - Increasing the observability and controllability of circuits
- Putting hardware in place to allow testing (e.g. scan pins, BIST, etc.)
- Space redundancy
 - Self-checking blocks: some properties of the outputs are checked for correctness (e.g. residue, parity, ECC)
 - Full hardware replication: operations are repeated in replicated hardware (e.g. triple modular replication, DIVA, etc.)
- Time redundancy
 - Outputs are latched twice at different times to detect timing errors

esigning Tomorrow's Microprocessors

Error Detection and Fault Isolation

- Fault avoidance
 - Rigorous design and verification
 - Comprehensive testing

Instantaneous error detection

- Arrays, controls, latches, dataflow, interface
- Redundancy
- Inline checking
- ECC for memory and caches
- CRC for I/O links and disks

Designing Tomorrow's Microprocessors

No error on outputs Triple Modular Redundancy (TMR) N-Modular Redundancy (NMR) Module 1 Woted Outputs Module 2 Voter Voter Module 3

Spatial Replication: LockStep Like

- Duplicate instances of the pipeline; mirroring complete processors
- · Compare states:
 - Chip-External Detection: monitor and compare the two processors' external behavior at the chip pins (i.e., all address and data traffic exiting the lowest level of on-chip cache)
 - Cache Interface Comparison: monitor and compare the address and data traffic entering the interface of the cache
 - Full-State Comparison at Checkpoint Creation: the complete set of changes to architectural state are compared

igning Tomorrow's Microprocessors

Temporal Replication RMT: Redundant threads execute at the same time to check for errors Hardware implementation on SMT Multi-core based RMT using fingerprint Fewer Compare Optimized compares are signatures of instruction versions: needed -> selective/partial reduce thread sequences only replication communication

Temporal Replication: Software Assisted

- SIHT (software-implemented hardware faulttolerance)
 - It introduces the redundant operations and checks/assertions
 - Hardened values and subroutines
- SWIFT approach
 - VLIW
 - Reclaims unused instruction-level resources present during the execution of most programs

Designing Tomorrow's Microprocessor

Coding Like

- Parity
 - Cheap solution
- ECC
 - Used in large caches
- Extended protection against multiple strikes and multiple upsets
 - Interleaving, scrubbing

(fint-D

Coding Like Logic - ALUs

- · Residue codes
 - Uses residues with coverage close to the one achieved by FUs replication at a fraction of the area & power
- Mod D residue of number N: remainder of N divided by D
 - For arithmetic ops: (X op Y) mod 3 = ((X mod 3) op (Y mod 3)) mod 3
- Example:
 - X= 46238; 46238 mod 3 = 2
 - $Y=56788; 56788 \mod 3 = 1$
 - X+Y=103206; 103206 mod 3 = 0 (2+1 mod 3 is 0!)

signing Tomorrow's Microprocessors

Faults Mitigation

- · Transient faults
 - Selected hardening of circuit nodes
 - · Add extra capacitance to selected feedback nodes
- NBTI
 - Reduce duty cycle in PMOS transistors through content inversion
- Electromigration
 - Dummy activity in idle cycles to balance current in both directions

Designing Tomorrow's Microprocesso

CONCLUSIONS

Designing Tomorrow's Microprocessors

(Intel)

Post-Si Validation Detects Degradation Errors Defects/Bugs/Hard Faults Soft Errors Pre-Si Validation, Functional Validation Quad-Use Technology Core-Independent Online/Offline Mode Combine with SW/HW approaches

Multi-layer Approach

- A lot has been said about solutions that combine circuit, µarch, and SW approaches
 - Few to none seen
 - Each layer tries to do its best... probably paying a high price
- We need to design solutions bottom-up *considering* all different layers
 - Clearly identify error detection and recovery requirements for each level
 - Each layer contributes with its own detection and recovery capabilities
 - Co-design CKT/HW/SW solutions!

Designing Tomorrow's Microprocessors

Adapt the System

- Reconfiguration
 - Transistor level (manufacturing time)
 - · Spare transistors
 - Circuit level
 - Spare cache lines
 - Microarchitecture
 - Memory, processor, routers, networks
 - Software
 - Components that can be virtualized (e.g., bypass levels in inorder cores)
 - OS
 - Task allocation (heterogeneity)

.....