

The key idea

- · Cost of running the SW:
 - Running the SW comes with some cost
 - "Observing" the dynamic code
 - Optimizing the code
 - Store optimized regions
 - The SW cost is amortized
 - The optimized segments are executed many times
 - Using staged optimization helps significantly:
 - Frequent regions : Few optimizations / low SW cost
 - Hot regions : Further optimization / medium SW cost
 - Critical regions : Maximum optimizations / high SW cost

Designing Tomorrow's Microprocessors

The key idea

- Comparison between HW-only and co-designed CPUs
 - "Amount" of hardware

- Traditional approach : More hardware Co-designed processors : Less hardware

- Complexity of hardware

- Traditional approach : Very complex (e.g. support for ooo)

🖏 Co-designed processors : Much simpler

Power Consumption

- Traditional approach : High (optimization, HW complexity)

Co-designed processors : Significantly lower

- Performance

- Traditional approach : High

- Co-designed processors : In the same order

Designing Tomorrow's Microprocessors

The key idea

- The benefits
 - Similar performance
 Less Power
 (often higher performance)
 (extended battery life)
 - Smaller Area (lower cost)
 - Easier to design and validate (lower cost / shorter time-to-market)

• How?

- Use SW instead of HW for optimizing
- SW is usually easier to debug than HW
- Keep the optimized code for future use
- Efficient resource utilization (optimize once, use many times)

Designing Tomorrow's Microprocessors

Outline

- · Overview of the technology
 - What are the HW/SW co-designed processors
- Key Ideas and Advantages
 - From the HW-only CPU to the co-design paradigm
- Research Projects / Market examples
 - Academic Research
 - Products
- Potential and Open Issues
 - A glance to the huge improvement potential

Designing Tomorrow's Microprocessors

Research projects / Market examples

- · Many researchers identify the value of the approach
- · A lot of work in academia
 - Parrot
 - ISCA 2004:
 - "Power Awareness through Selective Dynamically Optimized Traces"
 - Targets both performance and power
 - The processor has 2 pipelines
 - Simple lower power for "cold" regions
 - Aggressive higher power for "hot" regions
 - Operation
 - Instructions initially go through the "cold pipeline"
 - Hot regions are identified and optimized
 - Optimized regions are stored and reused

Designing Tomorrow's Microprocessors

Research projects / Market examples

- · Many researchers identify the value of the approach
- · A lot of work in academia
 - rePLay
 - IEEE Transactions on computers 2001
 - "rePLay: A Hardware Framework for Dynamic Optimization"
 - Mainly targets higher performance
 - It is a HW only solution but follows the same principles
 - Is equipped with an optimization engine
 - Identify hot regions / optimize / store
 - Includes HW mechanisms to enable more optimizations
 - Uses aggressive HW

Designing Tomorrow's Microprocessors

Research projects / Market examples

- Market Examples
 - Transmeta™ Corporation (1995 2009)
 - Transmeta™ built the first co-design processors
 - Crusoe™ 2000
 - Efficeon™ 2004
 - VLIW architectures
 - Host ISA: x86
 - Elaborated Software: Code Morphing Software
 - Simple Hardware which provides special support for the optimizer
 - Main target
 - 100% compatibility
 - Similar performance
 - Lower power

Designing Tomorrow's Microprocessors

Agenda

- · Overview of the technology
 - What are the HW/SW co-designed processors
- · Key Ideas and Advantages
 - From the HW-only CPU to the co-design paradigm
- · Research Projects / Market examples
 - Academic Research
 - Products
- Potential and Open Issues
 - A glance to the huge improvement potential

Designing Tomorrow's Microprocessors

Open Issues

- · Conventional processors have been evolving for many years
- · Co-designed processors is a new paradigm
 - A lot of work is needed for full exploitation
 - This is an amazing topic! Compilers + Computer Architecture + ...
- Some important questions
 - Exploit the dynamic information
 - Mechanisms to exploit dynamic information
 - Speculation techniques for performance / power
 - Leverage for multiprocessing
 - Software for efficient execution of parallel code
 - Fault tolerance

Designing Tomorrow's Microprocessors

Open Issues

- · Conventional processors have been evolving for many years
- · Co-designed processors is a new paradigm
 - A lot of work is needed for full exploitation
 - This is an amazing topic! Compilers + Computer Architecture + ...
- Some important questions
 - Segment Specific designs
 - Can we have CPUs optimized for different market segments?
 - One HW and different SW (maximize for performance / power)

Designing Tomorrow's Microprocessors

- Are traditional mechanisms good enough?
 - e.g. pre-fetchers, branch predictors
 - How to take advantage of the simpler circuitry

Market examples / Research projects

- · Reading:
 - "The Architecture of Virtual Machines"

 IEEE Computer 2005, James E. Smith, Ravi Nair

 Gives an excellent introduction to the whole technology
 - "Power Awareness through Selective Dynamically Optimized Traces" ISCA 2004, Rosner et al.
 - Easy to understand and follow overview of where the benefits come from
 - "The Technology Behind Crusoe™ Processors"
 White Paper 2000
 - A lot of information of the underlying implementation issues

Designing Tomorrow's Microprocessors

Conclusions

- · Radical improvements usually come from radical solutions
- Do not use HW for everything
 - Consumes power, more complex design, higher cost...
 - Non-efficient resource utilization
- Co-designed processors: CPU=SW+HW
 - Efficient resource utilization
 - Less power, less complexity, lower cost, similar (higher) performance
 - Huge room for technology innovation
 - A huge interest in the research community

Designing Tomorrow's Microprocessors

