

Atmospheric modeling: introduction, some applications and computational demands

Kim Serradell kim.serradell@bsc.es

Barcelona Supercomputing Center-Centro Nacional de Supercomputación Earth Sciences Department. Barcelona.

Aules d'Empresa 2011 – Facultat d'Informática de Barcelona - 25 de gener 2011

eniliuo

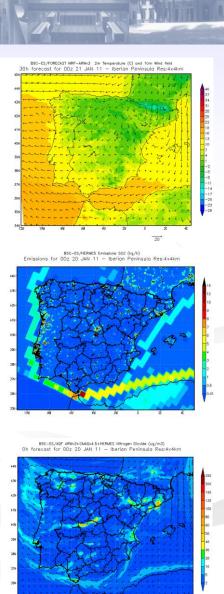
- Presentation
- Introduction
- Models in BSC
- Running Models
- Examples of work
 - Parallelizing
 - Optimizing
 - Bechmarking
- Further directions

noitoinezeni

- Made my education in FIB.
- Finished on 2005.
- Then working in different places.
- And two years ago, I went to the BSC and started to work on Earth Sciences Dpt.

Introduction

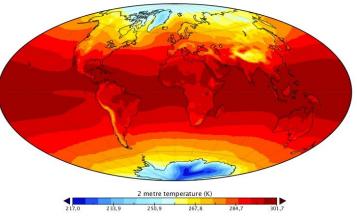
- Atmospheric Model: Mathematical Models with dynamic equations
- We need computers to solve these equations


Elaborado el 19/01/2011. Válido para el 20/01/2011 de 12 a 24 horas

- Before getting this nice picture, we need to follow a "forecast chain".
- •Today we will explain this from the IT point of view.

Models in ES-BSC

- Meteorological Modeling
 - WRF: Weather Research Forecasting
 - Fortran Code
 - MPI, OpenMP and CUDA
- Emissions
 - HERMES: High-Elective Resolution Modelling Emissions System
 - C Code
 - Not parallel
- Air Quality Forecasting
 - CMAQ: Community Multiscale Air Quality
 - Fortran Code
 - MPI



Models in ES-BSC

- Mineral Dust Modeling
 - •BSC-DREAM8b: Dust REgional Atmospheric Model
 - Fortran Code
 - Not parallel
- Climate Change
 - EC-EARTH
 - Fortran, C
 - •MPI, OpenMP

Computational Demands

- Which domains are we simulating ¿?
 - Barcelona
 - Catalunya
 - Spain
 - World
- Which resolution ¿?
 - •1 km² 4 km² 12 km² 50 km²
- Increasing this parameters, increases the system constraints
 - Computation Needs (CPU's, Memory Bandwith...)
 - Data Storage
- Define this parameters in function of your hardware and time to serve forecast.

Running Models

From the computer point of view a running model is:

```
bsc32359@s41c3b01-glgabit1:..ORECAST/AO/scripts
Fitxer Edita Visualitza Cerca Terminal Aiuda
                              MATH 'set \!:1 = 'echo "\!:3 $" | bc -l'' # enables Mathematical formula
                    @ dayswitch = 1
                                dayswitch = 0
                                  Starting simulation:" 'date +%R', 'date', 'date +%Y%)', 'date +%Y%m%d'
'YMD of the meteo archive: "%YMD"" at time: 'date +%R'
                                  WRF_METEU /gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METEO/OUT/WRF/ARCHIVE/s{YMD}12
                                    WKF_METLAND_/gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METED/OUT/WRF/ARCHIVE/S (YMD 12 WKF_METLAND /gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METED/OUT/WRF/ARCHIVE/S (YMD 12 WKF_METCAN /gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METED/OUT/WRF/ARCHIVE/S (YMD 12 WKF_METCAND /gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METED/OUT/WRF/ARCHIVE/S (YMD 12 WKF_METAND /gpfs/projects/bsc32/bsc32359/CMAQ-mat/FORECAST/METED/OUT/WKF/ARCHIVE/S (YMD 12 WKF_METAND /gpfs/projects/bsc32/bsc32359/
                                                  you'ich = 0 ) then #Today's simulation

date d 01:00 mext day "NY" > Stime folder/startdate.dat

date d 01:00 mext day "NY" > Stime folder/startdate.dat

date d 01:00 mext day "NY" > Stime folder/startday.dat

date d 01:00 mext day "N" > Stime folder/startday.dat

date d 01:00 mext day "N" > Stime folder/startday.dat

date d 01:00 mext day "N" > Stime folder/startday.dat

date NYWMHd > Stime folder/startmat.dat day -1

date NYWMHd > Stime folder/startmat.dat day -1

date d 01:00 mext day "NYWMHd > Stime folder/yearmonthday

date d 01:00 days" NYWMHd > Stime folder/gdate3.dat

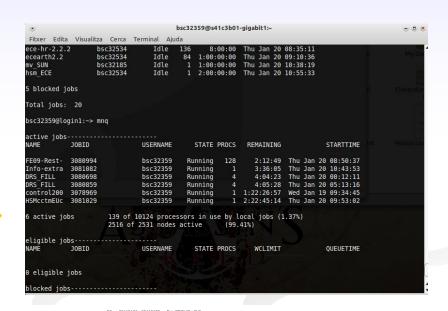
date d 01:00 days" NY > Stime folder/gdate3.dat

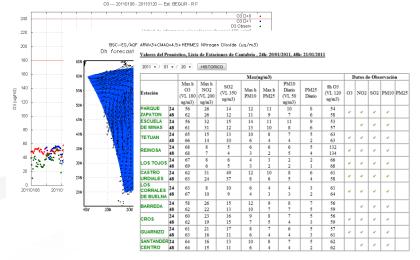
date d 01:00 days" NY > Stime folder/gdate3.dat

date d 01:00 days" NYWMHd > Stime folder/yeardonth3.dat

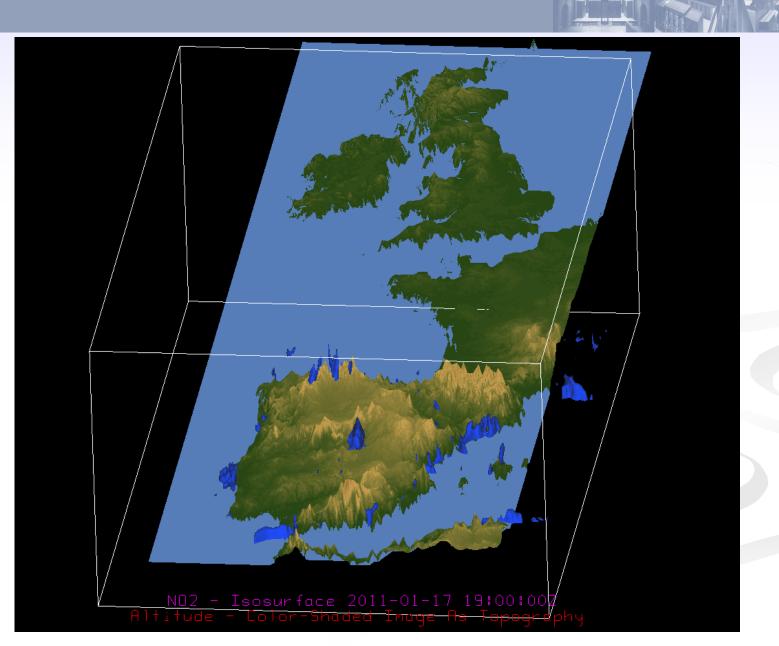
date d 01:00 days" NYWMHd > Stime folder/yed3.dat
```

A LARGE SCRIPT Only the main control has more than 1600 lines.



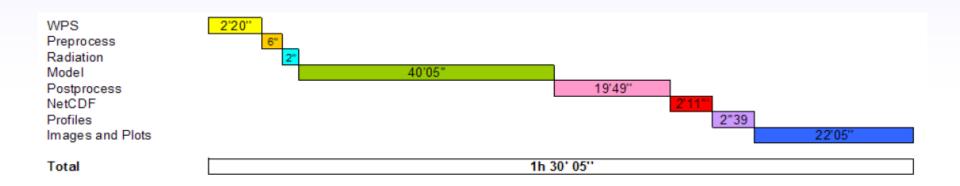

Three principal steps

- Getting initial data and boundary conditions
 - Via FTP
 - From other institutions


- Running Models
 - Intensive calculations

- Publishing results
 - Maps
 - Plots
 - KMZ
 - Data to analyze...

Or even 3D...

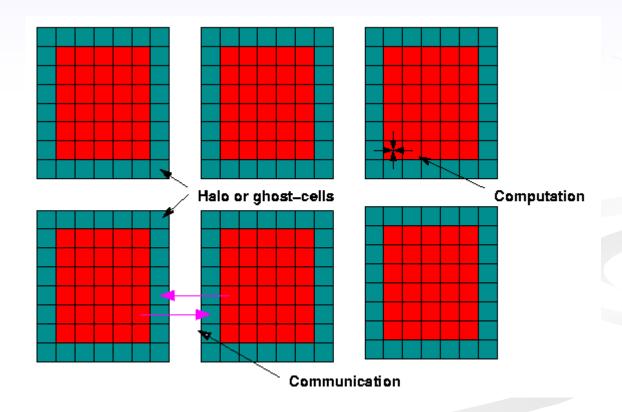

Challenges of the IT

- Assuring daily execution on the model
 - Crash recovery
 - Monitoring the Model
 - Assuring transfers
- Timing the execution
 - Results have to be on time

- Data Storage
 - Huge size of data
 - Storing and cleaning
- Helping researchers in modeling/running/optimization
- And many more...

Example: Model Chronogram BSC-DREAM3b

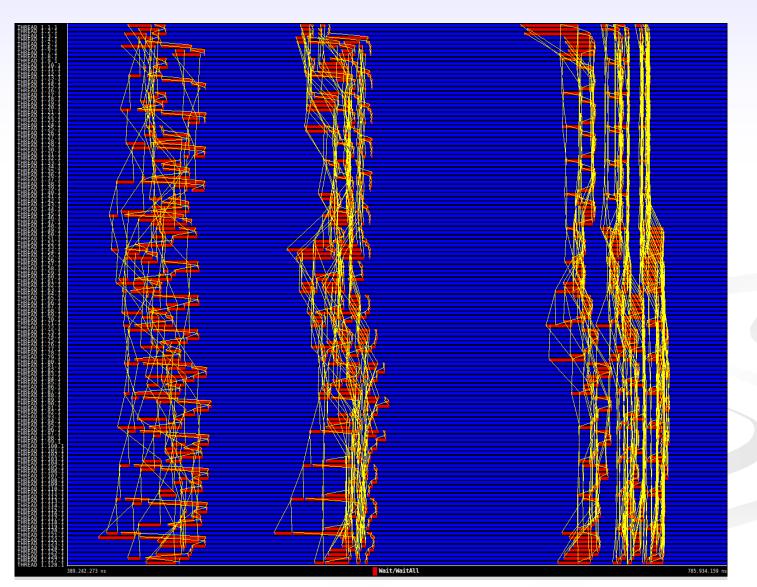
- Different steps involving different executables, data...
- Many failures points
- Data transfers
- Fixed time to run



Parallelizing Aimospheric Models

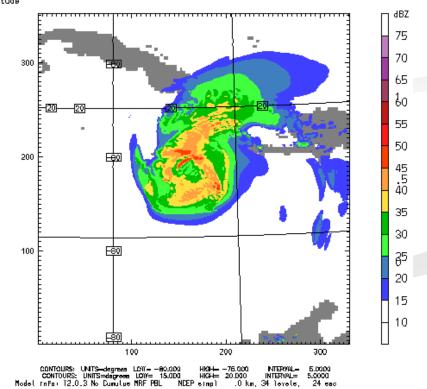
- •We need to be able to run this models in Multi-core architectures.
- •What's the way to do it ¿?
 - Model domain is decomposed in patches
 - Patch: portion of the model domain allocated to a distributed memory node.

Parallelizing Aimospheric Models

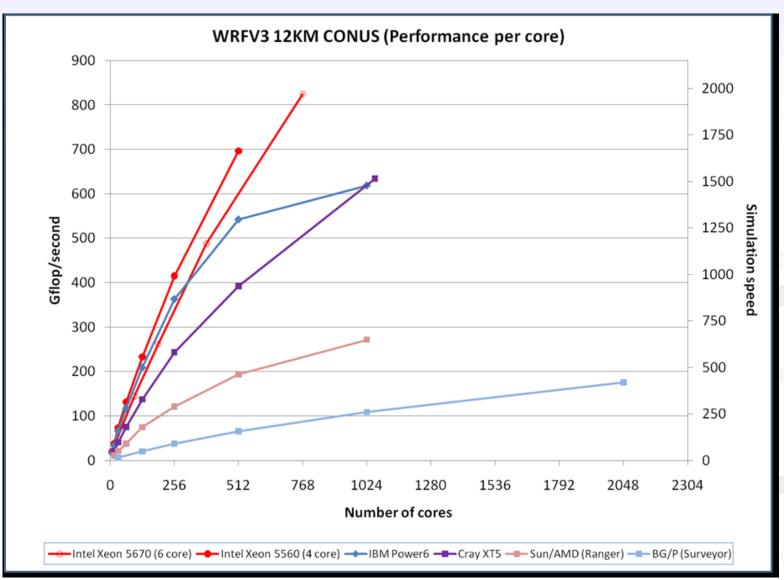

Opiimizing Applications

- Multicore applications
- Applications sometimes not scalling correctly.
- We need to find the causes and correct it.
- But how to do it, in a 128 Cores Run ¿?
- These optimizations are highly hardware dependent.
- Also, compiler optimizations.
 - Which flags are the best for our machine ¿?
 - Do I have accurate results ¿?

Opiimizing Applications

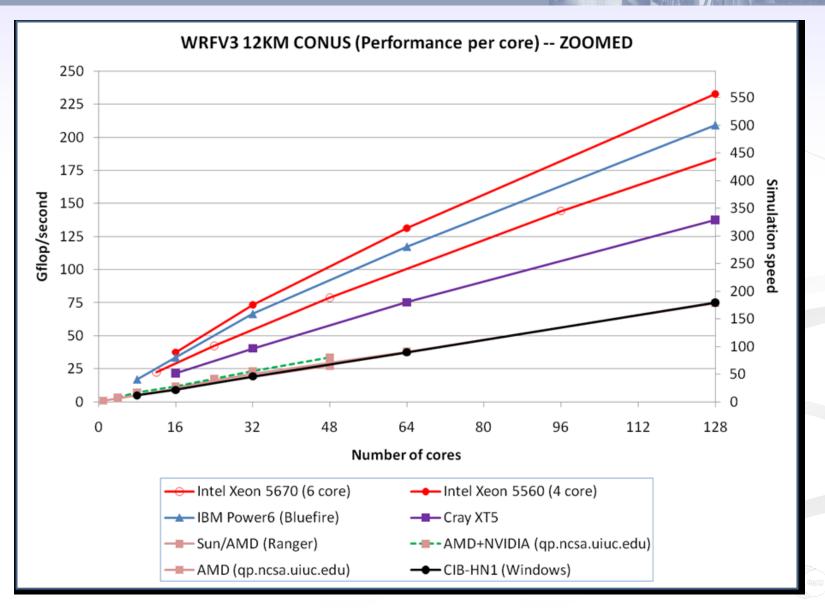


Benchmarking


- Compare our execution with other architectures.
- Test cases are defined:
 - Cases with intense activity
- •We want to evaluate:
 - Execution time (speed) in our architecture.

Ivan 12-km WRF Fost: 1 h LAND MASK (1 FOR LAND Max Reflectivity Latitude

Init: 00 UTC Sat 11 Sep 04 Valid: 01 UTC Sat 11 Sep 04 (19 MDT Fr: 10 Sep 04)



Benchmarking

Benchmarking

Supercompeting Conter

Furiher Directions

- Petascale supercomputers to Earth Sciences
- •GAEA: The Fastest Supercomputer for Earth Sciences
- •In June 2010, installation concluded for a 260-teraflop Cray XT6 system with 2,576 AMD "Magny-Cours" 12-core, 2.1 GHz processors.
- In June 2011, a 720-teraflop
 Cray XE6 system will be added to
 Gaea. It will employ the
 next-generation AMD Interlagos
 16-core processor.

Furiher Directions

- Using GPU's on Earth Sciences
 - •Graphics processing units are highly parallel, multi-threaded, many-core processors with a very high computational power and memory bandwidth.
 - Porting code to this new technology.
 - •WRF Community started last year (1% code translated can give 20% of speedup).

