

The Power of Computation in Life Sciences Life Sciences - BSC

GROUP	HEAD		RESEARCH AREA
EAPM	Victor Guallar		Atomic (and electronic) modeling of protein biochemistry and biophysics
MMB	Modesto Orozco	TK ADK	Micro and mesoscopic modeling of macromolecules and Drug Design
PID	Juan Fernández	3000	Identification of the structural bases of protein-protein interaction
CG	David Torrents		Analysis of genomes and networks to model diseases, systems and evolution
EBL	Montse Soler		Implementing advanced experimental approaches
AU	Josep Ll. Gelpí	Market M	Web services, applications, databases and software integration.

Research Lines

Target & Drug Discovery

BioSupercomputing

Genomics & System Biology

BioPhysiscs

Electronic and Atomic Protein Modeling Victor Guallar

- Electron transfer processes and enzymatic catalysis. Describe these processes using in-house developed mixed Quantum Mechanics/Molecular Mechanic (QM/MM) algorithms.
- Protein-ligand and protein-protein docking. Sample interactions using atomic and coarse grain force fields combined with Monte Carlo methods and protein structure prediction techniques.

Molecular Modeling & Bioinformatics Modesto Orozco PIRB

- Study of protein flexibility. MODEL, flexibility & binding, ed-MD, MDWEB and Coarse Grained Models.
- Drug and target discovery. SNPs and pathology, docking, binding site characterization, lead optimization and dirty drugs study.
- Nucleic acids and chromatin. Nucleosome characterization, promoter prediction and physical properties of unusual DNA.

Protein Interactions and Docking J.Fernández Recio

 Development of new algorithms for protein docking. Rigid-body sampling,
 Flexible & ensemble docking and Docking scoring

• **High-throughput application.** Porting to high-performance platforms, Binding site prediction for proteomics, Multi-protein complexes and Interaction networks modeling.

• Study of association mechanism and biomedicine applications. Mechanism and energetics of association and Drug design targeting protein interactions

Computational Genomics Group David Torrents icrea interest total Analysis

- New Generation DNA Sequencing.
 Tomato genome assembly and Cancer genome project of Chronic Lymphocytic Leukemia
- High-throughput and Omics data systems biology. Study of complex diseases (Diabetes) and study of infectious diseases (Malaria)
- MetaGENOMICS. Human Intestinal Tract
- Identification of Gene Regulatory Regions.

TOMATO

DIABETES

MALARIA

Experimental Bioinformatics Laboratory Montse Soler

• Nucleosome positioning. Validation of physical predictive models and effect of methylation and cell cycle.

• Pathological Pathways. Systems biology/Network medicine, Colon Cancer, Alzheimer and Breast Cancer.

• Epigenetics and DNA physics. Towards a mesoscopic model for epigenetics.

INB-BSC Algorithmic Unit Josep Lluis Gelpí BARCELONA TINB®

 Web & Database Development. MobyMiner, INB workflows and Databases

Epidemiology. Reutmathoid arthritis (IMIDKIT)

Elixir and ICGC projects. Datamining, GSC and CSCm Mobylite.

Rational Drug design

Drug Development

Cost: \$1.2B / drug

Computer-Based Drug Design

Improve Time to Market

Computer Simulation

- Why and when we use it
 - To validate a known model
 - As a cost-effective alternative
 - As the only realistic approach to solve a problem
- The structure of bio-molecules are hardly modeled. The dynamics through experiments are only available for small molecules.
- There are different methods with different levels of complexity and realism

Molecular Simulation

Molecular Dynamics

 Atoms and molecules are allowed to interact for a period of time by approximations of known physics.

Molecular Dynamics of Solvated Protein

- Snapshot every femtosecond (10⁻¹⁵s)
- System of 10⁴ atoms
- 10 operations per atom pairmate
- Using 16 processors we are able to simulate 10 nanoseconds (10⁻⁹s) per day

MD Scale

• Today the millisecond scale (10⁻³s) is reached using specific hardware (512-processor)

Protein Interaction

Simulate and Explore

 Explore how to proteins interact. Explore how a drug binds its target.

• The Monte Carlo method is used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm.

Drug Discovery

- Red: Cristal Protein
- Blue: Modeled Protein (Coarse Grained)
- Drug explores
 protein binding
 site using a Monte
 Carlo algorithm

RESEARCH

TEAM

Strong IP

Product

Way to Market

Big Market

Business Model

MARKET

BioSupercomputing: The EXASCALE Challenge

Life Sciences

- The biological problem is diverse in nature. Input of biologists should be important when selecting architectures
- Many biological problems are hard to scale
- Computer
 - A) Manage data (Store)
 - B) Manipulate data (Calculator)

The computer as data manager

- Data growths exponentially
- Data management more complex
- Data integration a crucial issue
- Processing of data very costly

Massive (human) genomic projects

Genomics: Next generation sequencing

- Every experiment 2 Tb of data
- Every machine 2 experiments a week
- A medium sized center 10 machines

A sequencing center generates around 2 Petabytes data a year!

Massive (human) genomic projects

50 cancers

25000 cancer genomes

Data Link

Structures, chemical, literature,...

The computer as a calculator

- Importance of simulation increases with:
 - Increase in data on biological systems
 - Better definition of the problem
- Different types of algorithms
- Often set-up conditions are unclear

Current limitations in MD

- Size of the system
 - Typically: 10⁴ 10⁵ particles
 - Flagship: 10⁶
- Simulation length (10⁴ particles)
 - Typically: $10^1 10^2$ ns
 - Using HPC: μs
 - Using Anthon: ms

QM/MD Scalability | CPMD

• <u>www.cpmd.org</u> implemented Jugene Curioni et al. (IBM Zurich)

Simulation scenario in Life Sciences

- Molecular simulations
 - Structural prediction
 - Docking
 - Atomistic simulation
 - Cell-scale mesoscopic simulations
- Gene inter-relations
- Cell simulation
- Organ simulation
- Ecosystem simulation

Breast cancer interactome

Cancer Interactome

Protein-Protein Docking

YEAST 3D Interactome

From abstract networks to real cells

EXASCALE Life Science List of Experts

Biocomunity HPC Support

BioSupercomputing open to "BioCommunity"

Pre-defined Workflows

User-friendly for non-expert

Molecular Modeling & Bioinformatics

Electronic and Atomic Protein Modeling

Protein Interactions and Docking

Computational Genomics

Experimental Bioinformatics Laboratory

INB-BSC Algorithmic Unit

Contact:

Ramon Goñi Senior Researcher BSC, Life Sciences ramon.goni@bsc.es

